Visual Graph Arena Dataset

Dataset Details

Visual Graph Arena dataset contains 3 main tasks each with two sub-tasks (more details in Tasks).

The directory structure of the Visual Graph Arena (VGA) dataset can be accessed here. Also, an interactive version of the directory structure is available below.

  • Graph Arena(3)
    • isomorphism(2)
      • easy(2)
        • inputs(2)
          • train (140,000 samples)
          • test (15,718 samples)
        • labels(2)
          • train_labels.txt
          • test_labels.txt
      • hard(2)
        • inputs(2)
          • train (127,374 samples)
          • test (14,298 samples)
        • labels(2)
          • train_labels.txt
          • test_labels.txt
    • path(2)
      • hamiltonian(2)
        • inputs(2)
          • train (25,000 samples)
          • test(2)
            • kawai (2,480 samples)
            • planar (2,480 samples)
        • labels(2)
          • train_labels.txt
          • test_labels.txt
      • shortest(2)
        • inputs(2)
          • train (80,000 samples)
          • test(3)
            • random (8,672 samples)
            • kawai (8,672 samples)
            • planar (8,672 samples)
        • labels(2)
          • train_labels.txt
          • test_labels.txt
    • cycle(2)
      • hamiltonian(2)
        • inputs(2)
          • train (69,935 samples)
          • test(2)
            • kawai (7,740 samples)
            • planar (7,740 samples)
        • labels(2)
          • train_labels.txt
          • test_labels.txt
      • cordless(2)
        • inputs(2)
          • train (80,000 samples)
          • test(2)
            • kawai (6,484 samples)
            • planar (6,484 samples)
        • labels(2)
          • train_labels.txt
          • test_labels.txt

The graphs in the datasets consist of 8-9 nodes. The training and test sets for each task use different graph layouts to assess the models' ability to generalize across visual representations.

Each 'image_{i}.png' in the input directories corresponds to the i-th row of its associated 'label.txt' file.